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We present a methodology to characterize synchronization in time series based on symbolic representations.
Each time series is mapped onto a sequence of p-dimensional delay vectors that are subsequently transformed
into symbols by means of a rank-ordering of their values. Based on these representations, we propose a
transcription scheme between symbols of the respective time series to study synchronization properties. Group-
theoretical considerations and the use of information measures allow us to classify regimes of synchronization
and to assess its strength. We apply our method to a prototype nonlinear system, which reveals a rich variety
of coupled dynamics. We investigate in detail the robustness of the derived synchronization measure against
noise and compare its value with that of the established measures.
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I. INTRODUCTION

Synchronization phenomena are ubiquitous in nature.
They take place among coupled oscillatory systems. Syn-
chronization is not restricted to periodic systems; it is also
observed in nonlinear chaotic systems. In this case, its emer-
gence is by no means trivial due to the high sensitivity of
chaotic systems to initial conditions. Examples of synchroni-
zation arise in different fields of science, such as electronics
�e.g., coupled circuits�, physiology �e.g., spatiotemporal
structuring of electroencephalographic signals or between
cardiac and respiratory systems� �1,2�, extended ecological
systems �3�, or in nonlinear optics �e.g., coupled laser sys-
tems with feedback�. Different synchronization states have
been identified in the study of coupled chaotic systems,
namely complete synchronization �4�, phase �5,6� and lag-
synchronization �7�, generalized synchronization �8,9�, etc.
�for a review about synchronization in chaotic systems, see
�10��.

Here, we present a methodology to characterize synchro-
nization in coupled systems where information measures are
obtained using symbolic representations of time series. The
methodology is described in Sec. II, where we introduce
symbolic representations, the transcription scheme, the con-
cept of order classes and its properties, and the information
measures to quantify the degree of synchronization. The ap-
plication of the method to a coupled chaotic system is pre-
sented in Sec. III, and the following subsections discuss dif-
ferent aspects of its dynamics. Special attention is given to
the behavior of the probability density of order classes for
the different synchronization regimes �Sec. III A� and the
analysis of intermittent-lag synchronization �Sec. III C�. A
comparison of our results with those obtained using well-
established synchronization measures is presented in Sec.
III B, and Sec. III D is dedicated to an analysis of the robust-

ness of the proposed methodology against Gaussian additive
noise.

II. METHOD

Let x be a time series and q= �x0 , . . . ,xp−1� be a sequence
of length p extracted from x. The symbol Q associated with
q is defined as the rank-ordered indices of the components of
q. For instance, for q= �1.6,1.3,1.4,1.5�, the symbol associ-
ated is Q= �3,0 ,1 ,2�. This symbolic representation was first
introduced by Bandt et al. �11� in the context of complexity
analysis of time series. This approach motivated some stud-
ies on the characterization of similarities in time series
�12,13�. It should be mentioned that the occurrence of iden-
tical values in q has not been considered. When the sequence
contains equal values, one can always add a small random
perturbation to avoid this case.

Figure 1 shows symbolic representations of two time se-
ries �light gray symbols� for p=4. Given two symbols A1 and
A2, there always exists a symbol T, in the following called
transcription, such that the composition T�A1�=A2. The ac-
tion of symbol T is defined as follows. Let us consider A1
= �j0 , j1 , . . . , jp−1� and T= �k0 ,k1 , . . . ,kp−1�. Then,

T�A1� = �jk0
, jk1

, . . . , jkp−1
� . �1�

It should be noted that the set of symbols forms a finite
non-Abelian group of order p! with operation T known as the
symmetric group Sp. Dark gray symbols in Fig. 1 indicate the
transcriptions between the symbolic representations of the
time series. The group Sp can be partitioned into nonoverlap-
ping order classes Ci �Sp= �Ci� satisfying a power relation,
namely if T�CN, then TN= I, where I= �0,1 , . . . , p−1� is the
identity symbol and TN is the composition T�TN−1� with N
�1 and T0� I. Figure 2 �left panel� displays the transcription
matrix for p=3, where the three existing order classes, i.e.,
T= I �light gray symbol�, T2= I �black symbols�, and T3= I
�dark gray symbols�, are shown. It is worth discussing the*monetti@mpe.mpg.de
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action of transcriptions for different order classes. The iden-
tity transcription leaves symbols unchanged, thus it is the
simplest transcription. For p=3, consider transcription A
= �0,2 ,1�, which belongs to order 2 class, and apply it to
E= �2,1 ,0� �see Fig. 2�,

A�E� = D = �2,0,1� . �2�

Then, the action of A is identical to one transposition, i.e.,
the interchange of 0 and 1 in symbol E. However, if we
consider B= �1,2 ,0�, which belongs to order 3 class, and
apply it to E= �2,1 ,0�, the result is C= �1,0 ,2�. We have to
perform either two transpositions or one cyclic permutation
on E to obtain C. Note that for p=3, all order-2 transcrip-
tions cause a one transposition change while all order-3 tran-
scriptions lead to two consecutive transpositions. Thus, we
interpret order-3 transcriptions as “more complex” than
order-2 transcriptions. In general, the complexity of a tran-
scription T is assessed by a dissimilarity measure between
the source and the target symbols given by the minimum
number N of recursive applications of T to yield the identity
symbol I, i.e., N is the order class of the transcription.

The order classes satisfy an important property of invari-
ance. Let A and B be two symbols connected by the tran-
scription T, i.e., T�A�=B, and suppose that TN= I, i.e., T

�CN. Let Y be an arbitrary transcription such that Y�A�=C
and Y�B�=D. There always exists a transcription T� such that
T��C�=D. We will prove that T� belongs to order-N class as
well. In fact,

T��C� = D ⇒ T�†Y�A�‡ = Y�B� . �3�

Then,

T�†Y�A�‡ = Y†T�A�‡ . �4�

Applying A−1Y−1 on the right to both sides of Eq. �4� and
using the associative property of the group, we obtain

T� = YTY−1. �5�

Since T�CN, then T�N= I, so T and T� belong to the same
order class. This property of invariance also implies that T
and T−1 belong to the same order class. However, an order
class is not a group since it does not satisfy closure. Note that
Eq. �5� implies that order classes are also conjugacy classes.
Figure 2 �right panel� shows the structure generated by the
set C2 for p=5. The symmetry displayed by this structure is a
general property found in all order classes since it is a con-
sequence of Eq. �5�.

The action of a transcription is just equivalent to applying
permutations. It is well known that any permutation can be
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FIG. 1. Example of symbolic
representations of time series for
sequence length p=4. Symbols in
light gray correspond to the repre-
sentations and the dark gray sym-
bols indicate the transcriptions
that have to be applied to the up-
per symbols �source� to obtain the
lower ones �target�. Note that this
operation is not commutative.
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trix for sequence length p=3. The
black �dark gray� symbols belong
to order-2 �-3� class, respectively.
The identity symbol �light gray� is
a one symbol class satisfying TN

= I , ∀N. Right: For p=5, the tran-
scription matrix has �5!�2 ele-
ments. This matrix shows the po-
sitions of the elements belonging
to order-2 class, i.e., the structure
generated by order-2 transcrip-
tions for p=5.
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written as a product of disjoint cyclic permutations �DCP�.
Using this fact, one can prove that the order of any transcrip-
tion is the least common multiple �LCM� of the lengths of
the DCP, where the length of a cyclic permutation is defined
as the number its elements. Then, given a sequence length p,
one can calculate not only the number of classes but also
which orders will be present. In fact, since the sum of the
lengths of the DCP equals the sequence length p, the succes-
sion of order classes is never interrupted up to order p. For
instance, let us consider p=7 and calculate the number of
classes. As explained above, the identity class and order-2 to
-7 classes will be present. Order-8,-9, and -11 classes are
missing since there is no possible splitting of a transcription
of length 7 in DCP, which shows that the LCM is 8, 9, or 11,
respectively. However, order-10 and -12 classes are present
since there are transcriptions that can be expressed as a com-
bination of DCP of lengths 2 and 5 for order 10, and 3 and 4
for order 12, respectively. Thus, for p=7, nine order classes
are present �compare Fig. 4�b��. Note that for p�7, classes
greater than p and gaps of missing classes always occur.

We now focus on the probability density of transcriptions.
Consider a source and a target symbolic representation gen-
erated by the actual coupled dynamics of the time series.
Given a sequence of length p, the set of all feasible symbols
S1= �Xi� and S2= �Xj� conforms the state spaces for the
source and the target representations, respectively. The prob-
ability density of transcriptions PT�p� can be written as fol-
lows:

PTk
�p� = �

�=��i,j�:Tk�Xi�=Xj�
PJ�Xi,Xj� , �6�

where Xi�S1, Xj �S2, and PJ�Xi ,Xj� is the joint probability
density. Let P�1��Xi� and P�2��Xj� be the marginal probability
densities of the symbols Xi and Xj in state spaces S1 and S2,
respectively. The matrix Mi,j = P�1��Xi�P�2��Xj� is the prob-
ability density matrix of transcriptions for two independent
processes. In this case, the probability density of transcrip-
tions PT

e�p� can be evaluated as follows:

PTk

ind�p� = �
�=��i,j�:Tk�Xi�=Xj�

Mi,j , �7�

where Xi�S1 and Xj �S2. The aim is to find an information
measure to assess how much PT deviates from PT

ind. A natural
choice to quantify the contrast between probability densities
is the Kullback-Leibler �KL� entropy,

EKL�P,Pind� = �
i

PTi
�p�log2�PTi

�p�/PTi

ind�p�� . �8�

Since the EKL is not a symmetric quantity, we use the fol-
lowing symmetric form derived via the harmonic mean of
EKL�P , Pind� and EKL�Pind , P� �14�:

SKL�p� =
EKL�P,Pind�EKL�Pind,P�

EKL�P,Pind� + EKL�Pind,P�
. �9�

In contrast to the KL symmetric form, which uses just the
arithmetic mean, SKL�p� satisfies that SKL�p�
�min(EKL�P , Pind� ,EKL�Pind , P�) and thus remains always
finite. Other properties are discussed in �14�.

We demonstrated above that order classes are also conju-
gacy classes. This important property implies that T and T−1

belong to the same order class. Thus, SKL�p� for transcrip-
tions inside a class is a suitable invariant measure under the
interchange of source and target time series. This property of
invariance also allows us to calculate the Kullback-Leibler
entropy SKL

C �p� applied to the probability density of order
classes PC �examples of PC are shown below in Fig. 4�. In
this case, equations analogous to Eqs. �6�–�9� can easily be
derived. In the following, we will refer to SKL obtained using
the probability density of transcriptions within a single order
class CN as SKL

N ,N= �2,3 , . . . �.
The dynamics of coupled systems may lead to the extinc-

tion of order classes. We will refer to this feature as satura-
tion. When saturation occurs, the Kullback-Leibler entropy
�Eq. �9�� is not defined. However, for the vanishing order
class the probability density of transcriptions for the inde-
pendent processes PT

ind is nonvanishing. Information theoret-
ical arguments based on the fact that SKL�p�
�min(EKL�P , Pind� ,EKL�Pind , P�) suggest that in the route to
saturation SKL

N approaches the Shannon information entropy
of PT

ind. Thus, in the case of saturation we set SKL
N =

−�iPTi

ind log2PTi

ind.
It should be emphasized that SKL�p� quantifies the devia-

tion of the coupled dynamics with respect to that of indepen-
dent processes that conserve the probability density of the
symbolic representations.

III. APPLICATIONS

We apply the method to a bidirectionally coupled
Roessler-Roessler system �7� defined by the following set of
equations:

ẋ1,2 = − w1,2y1,2 − z1,2 + k�x2,1 − x1,2� ,

ẏ1,2 = w1,2x1,2 + 0.165y1,2,

ż1,2 = 0.2 + z1,2�x1,2 − 10� , �10�

where w1=0.99 and w2=0.95 are the mismatch parameters.
All time series were generated using a fourth-order Runge-
Kutta method with an increment �t=0.001 and the following
initial conditions: x1�0�=−0.4, y1�0�=0.6, z1�0�=5.8, x2�0�
=0.8, y2�0�=−2, and z1�0�=−4. Results were saved at inter-
vals �t=0.01. This chaotic system exhibits a rich synchroni-
zation behavior which ranges from phase �k	0.036� to lag
�k	0.14� and finally to complete synchronization as the
coupling parameter k is increased �7�. The results presented
here were obtained using the x components of the
Roessler subsystems. For every time series, we
generate p-dimensional delay vectors v� i
= (x�ti� ,x�ti+�� , . . . ,x�ti+�p−1���) (i= �0,1 , . . . ,L−1−��p−1��).
A symbolic representation is obtained by transforming the
sequence of delay vectors into symbols. We considered time
series of length L=219 �
775 orbits� and a delay �=150�t,
which fulfills the condition of minimum mutual information
of the delay coordinates (x1�t� ,x1�t+��) for the uncoupled
system �k=0� �15�. Using these settings, we expect a higher
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response of our measures to the influence of the coupling.
Figure 3�a� shows the Kullback-Leibler entropy SKL

C ob-
tained using the probability density of order classes PC for
p=6 and 7. Figures 3�b�–3�d� show SKL obtained using the
probability density of transcriptions in all feasible order
classes for p=6 and 7. We first discuss the behavior of the
coupled system using the results for SKL

C . For small values of
the coupling constant k, the time series behave independently
since the Roessler subsystems are almost uncoupled. For k
� �0,0.036�, SKL

C indicates that the actual dynamics hardly
deviates from that of the independent processes. SKL

C in-
creases at k
0.036 due to the transition to phase synchroni-
zation. For stronger coupling k, SKL

C increases again rather
monotonically until k
0.11. For k� �0.11,0.145�, SKL

C dis-
plays strong fluctuations revealing the presence of
“intermittent-lag synchronization.” This particular synchro-
nization regime characterized by synchronization periods in-
terrupted by bursts of nonsynchronized activity �7,16� is dis-
cussed in detail in the following sections. The strong
fluctuations displayed by SKL

C sharply vanish at the onset of
lag synchronization �k
0.145�. Lag synchronization is de-
fined through the condition x1�t+�0�=x2�t�, i.e., the coinci-
dence of the time series when shifted in time by a constant
time lag �0. Curves increase monotonically in the interval k
� �0.145,0.30� reflecting stronger synchronization. This
trend is only interrupted within the coupling range k
� �0.232,0.256� where a period-5 window occurs.

The periodic windows are better observed in Figs.
3�b�–3�d�. In fact, all curves display a peak at k	0.061 that
corresponds to a period-3 window �7�. SKL

6 for �p=6� and
SKL

12 for �p=7� indicate a period-6 window at k	0.11. To the
best of our knowledge, the existence of this periodic window
has not been reported before, probably due to its extremely

small size �k� �0.1094,0.1096��. All curves show signatures
�some of them are strong� of the occurrence of periodic be-
havior within the coupling range k� �0.232,0.256�.
Intermittent-lag synchronization is particularly reflected by
the strong fluctuations observed in Figs. 3�b� and 3�c� for SKL

5

for �p=6� and SKL
10 for �p=7�, which sharply vanish at k

=0.145.
Figure 3 also reveals that the Kullback-Leibler entropy of

some high-order classes saturates when increasing the values
of the coupling constant k. In fact, Figs. 3�b� and 3�c� show
that the coupled dynamics lead to the extinction of order
classes C5 for �p=6�, C7 for �p=7�, and C10 for �p=7� at k

0.145, k
0.09, and k
0.145, respectively.

It should be mentioned that certain order classes are better
suited for describing a particular feature of the system than
others. For instance, for p=6, SKL

5 characterizes the
intermittent-lag synchronization behavior and the onset of
lag synchronization better than SKL

6 . In this sense, different
order classes provide complementary information of the
coupled system.

A. The behavior of order classes for different
synchronization regimes

Figures 4�a� and 4�b� show the probability density PCi
of

the order classes for p=6 and 7, respectively. Note that Fig.
3�a� displays the contrast between probability densities as in
Fig. 4 and those of the independent processes. Figure 3�a�
indicates that for k=0.005 the contrast is vanishing �SKL

C


0�. This result is in agreement with the behavior of the
Roessler subsystems observed for the same value of the cou-
pling constant. A vanishing contrast implies that the prob-
ability density PC for k=0.005, which is clearly nonuniform,
is similar to that generated by two independent processes.
Note that even for two random independent processes, the
probability density of order classes is not uniform since the
cardinality of order classes is different. In the vicinity of the
transition to phase synchronization, PC deviates from that of
the independent processes �see Fig. 3�a�� and higher-order
classes dominate the coupled dynamics �see Figs. 4�a� and
4�b� for k=0.039�. This trend is reversed with increasing k,
and already at k=0.062 �k=0.074� for p=6 �p=7� C2 is the
most relevant class. Figure 4�a� shows that C2 dominates up
to large values of k where finally CI prevails. Figure 4�b�
reveals the same trends as in �a� except that C2 still domi-
nates at k=0.299.

We discussed above the different synchronization regimes
displayed by the coupled Roessler system that occur in the
range k� �0,0.30�. Phase synchronization, which arises at
k
0.036, is defined by a phase-locking condition between
the subsystems while the amplitudes may remain chaotic and
uncorrelated �5�. For increasing coupling values, stronger
synchronization regimes arise, e.g., lag synchronization,
where not only a phase-locking condition is fulfilled but the
amplitudes become correlated. In this sense, phase synchro-
nization is the weakest form of synchronization displayed by
this system. At the same time, the fact that for phase syn-
chronization amplitudes remain chaotic and uncorrelated im-
poses a more “complex” relationship between the sub-

FIG. 3. �Color� �a� SKL
C obtained using the probability density of

order classes for p=6 �red curve� and p=7 �green curve�. �b�, �c�,
�d� Kullback-Leibler entropy SKL obtained using the probability
density of transcriptions for the order classes and sequence lengths
indicated in the plots. Vertical full lines from left to right indicate
transitions to phase synchronization �k
0.036�, intermittent-lag
synchronization �k
0.11�, and lag synchronization �k
0.145�, re-
spectively. Vertical dashed lines at k
0.061 and k
0.11, and
hatched areas �k� �0.232,0.256�� indicate periodic windows. The
values of the coupling constant for the onset of phase synchroniza-
tion and the first periodic window were taken from �7�.
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systems than that for other synchronization regimes. For
instance, for lag or complete synchronization the amplitudes
are related via x1�t�=x2�t+�� with ��0 or �=0, respectively.
Consequently, while stronger synchronization regimes arise
for increasing values of the coupling constant k, the relation-
ship between the synchronized subsystems becomes simpler.

We have argued above that the order of a transcription
estimates its “complexity.” Thus, the probability density of
order classes indicates how “complex” the relationship be-
tween the time series is. Figure 4 demonstrates that higher-
order transcriptions play an important role in the description
of complex synchronization states such as phase synchroni-
zation �k�0.036�. For increasing k, the probability densities
of higher-order classes decrease and some of them vanish,
such as C5 for p=6 and C7 and C10 for p=7. In fact, simpler
synchronization states such as intermittent lag and lag syn-
chronization �k�0.11� are predominantly described by
lower-order classes �C2 and CI�. Clearly, the simplest syn-
chronization state, namely complete synchronization, will
only be described by the identity �CI�.

B. Comparison with other synchronization measures

Here, we compare our methodology with two well-
established approaches to characterize synchronization.

The concept of instantaneous phase 	�t� of a signal, origi-
nally introduced by Gabor �17�, is based on the Hilbert trans-
form and was brought into the context of chaotic synchroni-
zation by Rosenblum et al. �5�. Here, we do not consider the
Hilbert phases or phase differences as monotonically increas-
ing quantities as in �2�. We use instead the phases defined in
the interval �−
 ,
� and calculate the mutual information I	

to quantify the strength of synchronization �18�. The mutual
information I	 is defined as follows:

I	 = �
−



 �
−





D�	1,	2�log2
D�	1,	2�

D1�	1�D2�	2�
d	1d	2,

�11�

where D�	1 ,	2� is the joint probability distribution of the
Hilbert phase variables and D1�	1� and D2�	2� are the mar-
ginal probability distributions for each of the phase variables.

We have also considered the similarity function S intro-
duced in �7�, defined as the time-averaged difference be-
tween the variables x1� and x2� ��x1�
=0, �x2�
=0� taken with a
time shift �,

S2��� =
��x1��t� − x2��t − ���2

��x1�

2�t�
�x2�
2�t�
�1/2 , �12�

and search for its minimum �=min� S���. For signals having
the same standard deviation, S����=�2 for all �� if the sig-
nals are independent. For lag or completely synchronized
signals, S����=0 with ���0 or ��=0, respectively.

Figure 5 shows the behavior of the well-established syn-
chronization measures as a function of the coupling constant
k. For the sake of comparison, SKL

C for p=6,7 has also been
included. The mutual information I	 is able to differentiate
between unsynchronized and phase-synchronized behavior
since it sharply increases at k
0.036. However, for k=0, I	

indicates a counterintuitive nonvanishing synchronization
level that was not observed for other synchronization mea-
sures. For the range k� �0.04,0.11�, I	 increases and shows
local maxima at the position of the period-3 window �k

FIG. 4. �a� Probability density PC of the existing order classes for different values of the coupling constant k for p=6. Note that class CI

comprises only the identity I= �0,1 ,2 ,3 ,4 ,5�. �b� Idem �a� for p=7. Order-8, -9, and -11 classes are not allowed.
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0.061� and at the position of the period-6 window �k

0.11�. For k�0.11, the mutual information I	 displays
strong fluctuations that quickly become weaker and disap-
pear for k�0.13. In the range k� �0.13,0.30�, a rather
monotonically increasing behavior is observed only inter-
rupted by a step in the range k� �0.232,0.256�, which indi-
cates the presence of periodic windows.

We observe that for k=0, �=�2 and it decreases for in-
creasing values of the coupling constant. At k
0.036, �
sharply changes its local slope indicating the transition to
phase synchronization. � displays an outburst at k
0.061,
where a period-3 window is observed �7�, and decreases for
further increasing k until it vanishes at k
0.145, indicating
the onset of lag synchronization. For k�0.145, �=0 and
thus provides no further information about the dynamics of
the coupled system.

We conclude that � and I	 are suitable quantities that
correctly characterize most of the features of this coupled
system, such as the onset of phase synchronization and the
presence of periodic windows. As expected, � provides an
accurate estimate of the onset of lag synchronization but is
not sensitive to the stronger synchronization level that takes
place for increasing values of the coupling constant k. In
contrast, for k� �0.13,0.30�, I	 displays an increasing be-
havior indicating stronger synchronization but it fails to es-
timate accurately the onset of lag synchronization. The pro-
posed synchronization measures are able to characterize all
the features of these coupled systems. This comparative
study indicates that the intermittent-lag-synchronization be-
havior and the onset of lag synchronization are best charac-
terized by our synchronization measures.

C. The intermittent-lag-synchronization

As mentioned above, for k� �0.11,0.145�, the coupled
system displays a typical behavior known as intermittent-lag
synchronization, characterized by synchronization periods
interrupted by bursts of nonsynchronized behavior. Figure 3
shows that within this range of k values, SKL displays fluc-
tuations that are particularly strong for SKL

5 �p=6� �see Fig.
3�b�� and SKL

10 �p=7� �see Fig. 3�c��, and for SKL
C �see Fig.

3�a��, and vanish for k�0.145. In order to investigate if the
observed fluctuations are related to this particular synchroni-
zation state, we considered time series where intermittent-lag
synchronization occurs as shown in the upper panel of Fig. 6.
Using these time series, we performed a sliding window
analysis and calculated the Kullback-Leibler entropy SKL

2 and
SKL

C for p=6 and 7. For the sake of comparison, we also
show the behavior of the mutual information I	. Here, we
have considered SKL

2 instead of the Kullback-Leibler entropy
for the order classes SKL

5 �p=6� or SKL
10 �p=7�, which dis-

played the highest response to this synchronization regime in
a global analysis. The reason for this choice was to investi-
gate if the dominant order class �C2� in this range of coupling
values �k� �0.11,0.145��—although unable to clearly unveil
intermittent-lag synchronization in a global analysis—is sen-
sitive to the details of the coupled dynamics when using a
sliding window analysis.

The third and fourth panels of Fig. 6 show that SKL
2 and

SKL
C display dips when bursts of nonsynchronized activity

occur and high values �peaks� during synchronized periods.
The second panel of Fig. 6 shows that I	 displays a similar
behavior, thus providing a good description of this particular
synchronization state. It should be noted, however, that the
contrast between synchronized and nonsynchronized periods
is rather enhanced when applying our proposed synchroniza-
tion measures.

Let us focus again on the global analysis of the system
shown in Figs. 3 and 5. The results obtained using the sliding
window analysis suggest that fluctuations displayed by SKL

C

and SKL for k� �0.11,0.145� are due to the intermittent-lag-
synchronization behavior. Bursts of nonsynchronized activity
become less frequent when the coupling constant approaches
the value k=0.145 where they vanish. This value of the cou-
pling constant is in agreement with the one reported in �7�
for the onset of lag synchronization. We also found that the
presence of transcriptions in C5 �p=6� and C10 �p=7� is
highly correlated with the presence of bursts of nonsynchro-
nized activity. In fact, during synchronized periods, the num-
ber of transcriptions in these classes �not shown here�
strongly decreases or even vanishes, thus leading to the
strong fluctuations observed in SKL

5 , SKL
10 , and SKL

C . Figure 5
shows that I	 does not display particularly strong fluctua-
tions in the whole interval k� �0.11,0.145�, although the
sliding window study indicated that I	 was able to unveil the
details of the synchronization dynamics. Thus, I	 is not so
sensitive to the intermittent-lag-synchronization behavior as
the new information measures derived from some particular
order classes. Note that � also displays small fluctuations for
k� �0.11,0.145� �see Fig. 5�, which are due to bursts of non-
synchronized activity.

Finally, this sliding window approach demonstrates the
reliability of our method even for shorter time series.

D. The influence of noise

We have also applied our method to the coupled Roessler
system in the presence of superimposed additive white
Gaussian noise with varying standard deviations �n. The
signal-to-noise ratio �SNR� is defined as XSNR=�s /�n, where
�s is the standard deviation of the original time series. We
have considered as before the x components of the Roessler
subsystems and added white Gaussian noise independently to
both components. We first perform a detailed analysis to as-
sess which of the new information measures derived from
the symbolic transcription scheme is more robust against ad-
ditive Gaussian noise. Then, we present a comparative analy-
sis including the behavior of � and I	 for the noisy time
series.

Figure 7 shows the behavior of four different order classes
for XSNR= �16,8 ,4 ,2�. All quantities are sensitive to different
SNR values and show the expected trend, i.e., they decrease
for decreasing SNR values. They also indicate clearly the
onset of phase synchronization for all SNR values consid-
ered here. Figure 7�a� shows the Kullback-Leibler entropy
SKL

C obtained using the probability density of order classes.
For XSNR=16, the behavior of SKL

C is close to the noise-free
case �black curve� but strong fluctuations are observed for
k�0.14 since noise randomly generates transcriptions of
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classes C7 and C10, i.e., the classes suppressed by the dynam-
ics of the noise-free coupled system. For lower SNR values,
all curves still display an increasing monotonic behavior in
the range k� �0.04,0.30� indicating stronger synchroniza-
tion. Figures 7�b�–7�d� show the behavior of the Kullback-
Leibler entropy SKL

2 , SKL
3 , and SKL

4 , respectively. Figures 7�c�
and 7�d� show that for XSNR
16, SKL

3 and SKL
4 are not able to

unveil the stronger synchronization for larger values of k
since a constant or even a decreasing behavior is observed.
In contrast, SKL

2 displays an increasing behavior for all SNR
values. Thus, we identify SKL

C and SKL
2 as the most robust

measures against additive Gaussian noise
We include for the sake of comparison Fig. 8, in which �,

I	, and SKL
C versus the coupling constant k for different val-

ues of SNR are shown. We observe in all cases the expected
trend for decreasing SNR values, i.e., I	 and SKL

C decrease

and � increases. The transition to the phase-synchronized
regime is well described by all synchronization measures for
all values of SNR considered here. However, for large values
of k the mutual information I	 approaches a constant value,
thus being unable to show the stronger synchronization level
that persists even in the presence of noise. Signatures of the
intermittent-lag-synchronization state are not observed any-
more using this global analysis.

For k�0.14, � also displays an asymptotic constant be-
havior that can be derived analytically. Let us assume that
the standard deviation �s is identical for the two time series
x1�t� and x2�t� �this is a good approximation for the Roessler
system studied here�. As mentioned above, for k�0.14 the
coupled system displays lag synchronization, thus there ex-

FIG. 5. �Color� Different synchronization measures the coupling
constant k. Similarity measure � �black curve�, mutual information
I	 �violet curve�, SKL

C �p=6� �red curve�, and SKL
C �p=7� �green

curve�. I	 was calculated using 512 bins and the resulting curve was
scaled by a factor 0.27 in order to fit the range of the other quanti-
ties shown in this plot.

FIG. 6. Upper panel: Difference between the x components of
the Roessler subsystems �x��m� for the time delay �m=38, which
satisfies min�S���=S��m�. The intermittent bursts of nonsynchro-
nized activity are clearly observed. Second panel: I	 vs t. Third
panel: Kullback-Leibler entropy SKL

2 for p=6 and 7 vs t. Lower
panel: SKL

C for p=6 and 7 vs t. Results were obtained using a sliding
window analysis for window size w=25 000.

FIG. 7. �Color� �a� SKL
C vs k for different SNR values. �b� SKL

2 vs
k for different SNR values. �c� SKL

3 vs k for different SNR values.
�d� SKL

4 vs k for different SNR values. Vertical full lines from left to
right indicate transitions to phase, intermittent-lag, and lag synchro-
nization, respectively. Vertical dashed lines and hatched areas indi-
cate periodic windows. Different colors indicate SNRs of 16 �green
curves�, 8 �blue curves�, 4 �violet curves�, and 2 �red curves�. All
results were obtained for sequence length p=7.

FIG. 8. �Color� Upper panel: Similarity measure � vs the cou-
pling constant k for different values of SNR. Central panel: I	 vs
the coupling constant k for different values of SNR. Lower panel:
SKL

C for p=6 vs k. Different colors indicate SNRs of 16 �green
curves�, 8 �blue curves�, 4 �violet curves�, and 2 �red curves�.
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ists a time delay �� such as x2�t+���−x1�t�=0. In the pres-
ence of noise, the time series can be written as

x1,2� �t� = x1,2�t� + �1,2�t� . �13�

Then, it can be shown that within the lag-synchronization
regime, � behaves as

� =� 2

1 + XSNR
2 . �14�

As mentioned above, additive noise destroys all signa-
tures of intermittent-lag synchronization when performing a
global analysis of the system. We have also investigated
whether a sliding window analysis is able to provide any
signature of the behavior of the system in the absence of
noise. The upper panel of Fig. 9 shows the difference of the
x components of the Roessler subsystems for the same cou-
pling value used in Fig. 6 and XSNR=6. For the sake of ref-
erence, we have overplotted in light gray the difference of
the x components in the absence of noise where the bursts of
nonsynchronized behavior are clearly observed. A compari-
son of the second panels of Figs. 9 and 6 indicates that the
noise perturbation has a strong influence on the mutual in-
formation of the Hilbert phases I	. In fact, we observe that I	

displays a counterintuitive behavior opposite to that found in
the absence of noise. In contrast, SKL

2 �third panel of Fig. 9�
reveals exactly the same trend as in the noise-free system.
Thus, SKL

2 is still able to differentiate between these two syn-
chronization levels in the presence of noise. A comparison of

the third panels of Figs. 9 and 6 shows that the curves behave
similarly but the amplitude range is smaller. However, SKL

2

provides for p=7 a better description of the dynamics of the
system than for p=6 since it displays a higher contrast be-
tween the two synchronization levels. SKL

C behaves also ac-
cordingly to the presence or absence of bursts of nonsyn-
chronized behavior, but the sensitivity is lower than that for
SKL

2 . We have investigated the behavior of all above-
mentioned quantities for other SNR values. Our results �not
shown here� indicate that I	 is unable to account for differ-
ences in the synchronization level of the signals for XSNR
�12.

We conclude that information measures extracted from
symbolic representations, in particular SKL

2 , are better suited
than I	 to describe the behavior of the coupled system in the
presence of noise.

IV. CONCLUSIONS

We presented a method to characterize similarities be-
tween time series based on symbolic representations, which
is particularly useful to study synchronization. The property
of invariance with respect to the interchange of source and
target symbolic representations allows us to derive synchro-
nization measures for the different order classes. We demon-
strated that different order classes provide complementary
information of the synchronization dynamics. We presented a
comparative study of our methodology with other well-
established approaches to characterize synchronization. In-
formation measures extracted from the newly proposed sym-
bolic transcription scheme proved to be more robust than the
other synchronization measures against additive Gaussian
noise and offer higher detection sensitivity for particular dy-
namical features.

The understanding of the action of transcriptions belong-
ing to specific order classes led us to interpret the probability
density of order classes as an expression of the “complexity”
of the relationship between the coupled systems in terms of
the transcription effort. The probability density of order
classes shows that more complex synchronization states are
mainly described by higher-order classes while lower-order
classes dominate for simpler synchronization states. Our ap-
proach to characterize synchronization in time series pro-
vides a framework in which group-theoretical considerations
and information measures can be applied to classify regimes
of synchronization and to assess its strength. Our method is
also suitable to investigate the behavior of spatially extended
systems such as coupled-map lattices or cellular automata.
These models, which are able to display complex spatiotem-
poral dynamics, have been used to describe a wide range of
systems such as biological and ecological networks. In par-
ticular, we expect our methodology to be useful for the
diagnosis of brain activity using multichannel electroen-
cephalographic recordings, where the occurrence of synchro-
nization phenomena plays a relevant role.

FIG. 9. Upper panel: Difference between the x components of
the Roessler subsystems �x��m� for XSNR=6 �black curve� and time
delay �m=38. For the sake of reference, we also show the difference
between the x components in the absence of noise �light gray curve;
see also the first panel of Fig. 6�. Second panel: I	 vs t. Third panel:
Kullback-Leibler entropy SKL

2 for p=6 and 7 vs t. Lower panel: SKL
C

for p=6 and 7 vs t. Results were obtained using a sliding window
analysis for window size w=25 000.
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